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Adhesive dynamics of lubricated films
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Membrane waves have been observed near the leading edge of a motile cell. Such phenomenon is the result
of the interplay between hydrodynamics and adhesive dynamics. Here we consider membrane dynamics on a
thin fluid gap supported by adhesive bonds. Using coupled lubrication theory and adhesive dynamics, we
derive an evolution equation to account for membrane tension, bending, adhesion, and viscous lubrication.
Four adhesion scenarios are examined: no adhesion, uniform adhesion, clustered adhesion, and focal adhesion.
Two contrasting traveling wave types are found, namely, tension and adhesion waves. Tension waves disperse
with time and space, whereas adhesion waves show increased amplitudes and are highly persistent. We show
that the transition from tension to adhesion waves depends on a necessary, but insufficient, criterion that the
wave amplitude must exceed a critical gap height, which is dependent on adhesion binding probability. We also
show that strong adhesion results in sharp tension-to-adhesion wave transitions. The present work could
explain the strong persistence of the waves observed in adhered cells using differential inference contrast (DIC)

microscopy and the observation that the wavelengths decrease shortly after leading edge retraction.
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I. INTRODUCTION

The phenomenon of membrane waves has been observed
near the leading edge of a motile cell as a result of cyclical
protrusion, adhesion, and retraction [1]. Periodic retraction
offers an important means of testing the anchorage of the
lamellipodium to the substrate for failure of adhesion at the
tip leads to ruffling. Adhesion success at the tip, on the other
hand, leads to cell edge retraction, as myosin II contracts,
pulling the lamellipodial actin rearward [2]. This creates
compressive stresses on the membrane layer behind the ad-
hesion zone, leading to a fluid bulge traveling rearwards in a
wavelike manner [3]. Such membrane waves are often the
result of the interplay between hydrodynamics and adhesive
dynamics.

A common description of the cell membrane is the Hel-
frich model [4,5], which has been successfully applied to
studies on erythrocyte flickering [6] and extended to include
hydrodynamic damping [7], confined membranes [8], anhar-
monic perturbations [9], and cytoskeletal [10] and wall inter-
actions [11]. Other applications of the model include mem-
brane fluctuations induced by membrane proteins of specific
curvatures [12,13] and extended to account for membrane
instabilities [14], actin polymerization [15] and myosin con-
traction [16]. These studies are successful in explaining the
hydrodynamic fluctuations of the cell membrane [17], but
they do not account for adhesive dynamics and lubrication
effects.

Owing to the thin gap between the membrane and sub-
strate, the hydrodynamics of the fluid film can be adequately
described by the classical lubrication theory [18]. For the
case of cell spreading or peeling on an adhesive surface,
Hodges and Jensen [19] showed that the adhered front ad-
vances or retreats in a traveling wavelike manner. The same
model was subsequently extended to account for effects of
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bond tilting [20]. Using Bell’s kinetic theory [21] and Dem-
bo’s adhesive model [22], the adhesive forces can be de-
scribed as a contact potential that is long-range attractive but
short-range repulsive. This is similar to the conjoining or
disjoining pressures one finds in extremely thin liquid films,
where van der Waals forces are significant [23,24]. For a
finite elastic sheet lubricated by such an extremely thin fluid
film (e.g., MEMS), Hosoi and Mahadevan [25] have also
shown that a peeling wave travels to the trailing edge, where
pressure is vented and healing occurs rapidly.

Continuum adhesive dynamics models typically assume
that binding molecules are uniformly distributed on surfaces
[26-28]. However, it is known that adhesive structures tend
to be clustered in the form of focal contacts or adhesions
[29]. These adhesive structures are typically scattered along
the cell periphery [30], which account for 5-15 % of the
adhesion area [31]. The difference in mechanical strength
was recognized by Ward and Hammer [32] who proposed a
model of focal contact as an adhesive patch which fractures
instead of peels under strong load. More recently, adhesive
structures are broadly classified as uniformly distributed,
clustered, and focal adhesion-associated bonds [33,34].

In the present paper, we model the cell membrane as a
two-dimensional ~ fluid-lubricated  semi-infinite  sheet.
Through an imposed perturbation at the leading edge, we
analyze traveling wave behavior governed by lubrication and
adhesion effects. In addition, we account for nonuniformity
in adhesive binding due to clustering and focal adhesions.

II. THEORY
A. Lubrication theory

The lubrication approximation for steady thin fluid film
flows is written as

hp = pd U, (1)

where p(x) is the fluid pressure, u is the dynamic viscosity,
u(x,z) is the velocity in the x direction, and h(x) is the gap
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height. The reference frame is set at the leading edge of the
cell, which is advancing at a velocity of U due to actin pro-
trusion so that

4]
u(x,z) = o [ W)\ +U. (2)

Since the flow rate q=fgudz, and mass conservation re-
quires d,h+d,q=0, we can write the Reynolds lubrication
equation [18] as

1
dh+Udh——2a(h*dp)=0. (3)
121

B. Adhesive dynamics

Using Bell’s kinetic theory [21], adhesion is modeled as a
reversible chemical reaction A< A, where A is the density
of free receptors and A, is the density of bound receptors.
The forward and reverse reaction rates are assumed to follow
Boltzmann distribution [22]. If the reaction kinetics is rapid
compared to the hydrodynamics, the density of bound recep-
tors only depends on the gap height [19]. However, in the
present paper, we also consider the effects of bond cluster-
ing, where bond density is greatest near the cell periphery
[30]. The receptor site occupancy model [33] proposes a
sigmoid-type bond distribution with distance, whereby bond
density is saturated near the cell periphery and decreases
significantly beyond the saturation distance. Thus, the local
density of bound receptors is modeled as

K

Ay =AzKeq¢(X)eXp[— T,,T(h - )\)2] . (4)
where A, =As+A,;, K., is the chemical equilibrium constant,
k is the bond spring constant, N is the equilibrium bond
length, and ¢(x)=[1+exp[7(x—x)]]"" is a bond distribution
function, where 7 is the exponential prefactor of the sigmoid
function and y is the distance where the bond density is half
of saturation value. For the case of uniform bond density,
¢(x)—1 and the equilibrium kinetics model [19] is recov-
ered.

Each receptor bond modeled as a Hookean spring [22] so
that the stress due to adhesion is

m=A,k(h—\). (5)

The pressure within the fluid layer is the sum of the con-
tributions due to cell interior pressure, adhesion stress, mem-
brane tension, and membrane bending rigidity [19],

p=p.tm-— 0'(9)0(/1 + 7(9xxxxh’ (6)

where p, is the cell interior pressure, o is the membrane
tension, and 7y is the membrane bending modulus.

C. Nondimensionalization

The following dimensionless variables and constants are

now introduced,
R v R
)\7 - MUL 177 c ,LLUL pc’

H

X
I
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AK, kN> A2 A
o (M) 5= (). o= ()
uUL k, T wUL

(7b)

7= L, (7¢)

where L= UT is the length scale in the x direction and 7 is
the period of the wave.

Assuming L>\, we express Egs. (3) and (6) as a pair of
evolution equations:

1
ﬂxTﬁs@H+@ﬁ;i§@0F@m=o, (8a)

gxnjz(P—Pg—a¢AHeq<—§AHﬂ+&@“H

= YxxxxH =0, (8b)

where AH=H-1 is the deviation of the gap height from the
equilibrium.

The exact physics governing the protrusion event is not
well understood at this point [16]. Following a previously
proposed Gaussian dip model for lateral membrane waves
[16], we assume that the protrusion event can be described
by a similar fixed point perturbation of the membrane at the
leading edge. Therefore, the six boundary conditions re-
quired for the solution of the evolution equation are

H(O,T):{(1)+ d1-cos2nT)]2, ;i 1 e
’ . (9a)
IxxH(0,T) =0, dyH(,T)— 0, (9b)
P(0,T)= Py, 0xP(,T) — 0, (9¢)

where € is the peak-to-peak amplitude of the perturbation, «
is a measure of adhesion strength, and S is a parameter gov-
erning adhesion probability.

The boundary conditions at the leading edge [Eq. (9), left]
correspond to the fixed point perturbation produced by the
protrusion event, no bending moment (pin connection) and a
matched extracellular pressure. The boundary conditions far
from the leading edge [Eq. (9), right] correspond to the equi-
librium gap height, no height and no pressure gradient.

The evolution equation [Eq. (8)] is solved numerically on
a finite difference scheme using implicit time stepping. The
functions f and g are discretized in space via second-order
central differencing and linearized around H and P in a 2n
X 2n Jacobian matrix, where n is the number of discretized
nodes in the X direction. Iteration proceeds via Newton’s
method at each time step, until the relative error norms of H
and P vectors reach a convergence threshold of 107!2. For
numerical accuracy, spatial resolution n is doubled and time
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step AT is halved until the relative error norms are less than
1073, The computational domain is restricted to 0=X= 10,
where n=500 and AT=0.1.

III. RESULTS AND DISCUSSION

Consider a fixed point perturbation with a peak-to-peak
amplitude of e=2 at the leading edge of the cell. Since
pressure is scaled by a constant, we reference pressure at
zero (Py=P,=0). Comparing typical values of mem-
brane tension (o~1073 dyn/cm) and bending modulus
(y~107'2 dyn cm) [35,36], we set the tension coefficient as
unity (g=1) for reference and the bending coefficient as a
small parameter (y=0.01). However, note that the bending
term is of significance at small length-scales (see Appendix
A).

A. Adhesion scenarios

Distribution of adhesive bonds on membrane is typically
nonhomogeneous [29]. In this section, we describe lubrica-
tion adhesive dynamics under four different adhesion sce-
narios, namely, no adhesion, uniform adhesion, clustered ad-
hesion, and focal adhesion (Fig. 1).

1. No adhesion

For the case without adhesion (a=0), a leading edge per-
turbation results in a traveling wave, whose amplitude de-
creases with time (Fig. 2, upper left). Since membrane ten-
sion is dominant, we generalize such waves as tension
waves. The pressure wave assumes a “w-shape” profile with
negative pressures at the wave front and rear (Fig. 2, lower
left).

2. Uniform adhesion

For the case of uniform adhesion (=2, B=4, X=1),
the traveling wave shows an increase in amplitude (Fig. 2,
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FIG. 2. Space-time plots of membrane height and pressure pro-
file using perturbed amplitude e=2 and tension o=1. Bottom plots
denote adhesive bond distribution ¢(X). (Left) No adhesion («
=0) promotes dispersive tension wave; (right) uniform adhesion
(a=2, B=4, X=1) promotes stable adhesion wave. Insets show
wave profiles at specific times indicated by the adjacent cuts.

upper right) and the pressure wave is dual peaked (Fig. 2,
lower right). We generalize such waves as adhesion waves.
The observed growth in wave amplitude is remarkable be-
cause the adhesive stress is tensile which tends to restore the
gap height to the equilibrium length. Both the maximum gap
height and pressure tend toward equilibrium at long times.

3. Clustered adhesion

For the case of clustered adhesion, the adhesion distribu-
tion is rendered nonuniform such that the adhesion bond den-
sity is saturated near the leading edge [33]. To illustrate the
effects of adhesion distribution, we specify a=2, B=4, ¥
=4, 7=0.1, X=1. During entry into the cluster, the initial
tension wave switches to an adhesion wave. However, as the
adhesion wave progresses through the cluster, it reverts to a
tension wave (Fig. 3, left).

4. Focal adhesion

Focal adhesion typically consists of a cluster of adhesive
molecules of high mechanical stability. Focal adhesions are
also known to fracture rather than peel [32]. In this study, we
model focal adhesion as a strong uniform adhesion cluster,
whose bonds do not rupture under stress (=5, B=0, 1
=X=35). The bond distribution is given by ¢(1 =X=5)=1.
As shown in (Fig. 3, right), the tension wave first collides
into a stiff adhesion zone, trapping fluid and generating large
pressures within the focal adhesion. Then it spreads rapidly
along the length of the focal adhesion resulting in a highly
dispersed wave. The pressure remains elevated for an ex-
tended period of time after the wave front has exited the
focal adhesion.
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FIG. 3. Space-time plots of membrane height and pressure pro-
file using perturbed amplitude e=2 and tension =1. Bottom plots
denote adhesive bond distribution ¢(X). (Left) Clustering of adhe-
sive bonds (a=2, B=4, y=4, 7=0.1, X=1) results in the ad-
hesion wave reverting to tension wave a distance from the leading
edge; (right) focal adhesion (=5, B=0, 1=X=5) results in sig-
nificant wave dispersion. Insets show wave profiles at specific times

indicated by the adjacent cuts.
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B. Wave transition

As observed in the preceding section, waves could mani-
fest as either tension wave or adhesion wave. In this section,
we analyze the physical conditions governing each type
of wave and how wave transition could occur. First we define
AH,, as the maximum wave amplitude within the adhesion
zone (X>1) and AH* as the reference maximum wave
amplitude in the absence of adhesion (=0, o=1, X>1).
We also define a wave with a reduced amplitude ratio
(AH,,/AH*<1) as a tension wave and one with an amplified
amplitude ratio (AH,,/AH*>1) as an adhesion wave. The
wave transition point is defined at the crossover point
(AH,,/AH"=1).

1. Adhesive stress

Setting ¢(X)=1, the adhesive stress term in Eq. (8) is
written as
BAHZ)
> )

We plot adhesion stress M and its gradient dyM against
membrane height H as shown in Fig. 4(a) for a range of
adhesion probabilities 8={0,1/4,1,4}. At the edges of the
wave, the membrane height tends toward the equilibrium
value (AH—0), where the adhesive stress (M —0) tends to
zero and the adhesive gradient (dyM ~ a) is independent of
height. Setting the adhesion gradient dyM to zero, we show
that the maximum adhesion stress occurs at a critical gap
height (87"/2). If the gap height is less than the critical value

M = aAH exp(— (10)

______
~—a

11— e .
05 o 1 FIG. 4. (a) Plots of adhesive
. o5t~ I L stress M and its gradient dyM
rCTIIIIIIII against membrane height H;
05 O—%% s — (b) plots of amplitude AH,,/AH*
’ TB12AH* ’ against  transition  parameter
127+ =
= - - - H* (e=2, a=1); (c) plots of
%=2,p=0 ——a=10,p=0 e B ,
c)? —+—q=2,p=1 -x—q=10,p=1 d)2 T 2 B: 0 = 10, '3:0 amplitude AH,,/AH" against ref-
—+-q=2,p=2 -*-a=10,B=2 *we=2,p=1 -«—a=10,p=15 litude AH* (=1): (d
35| @=2,p= _ .ﬁ_ cemq=2 B=4 -w-q=10.p=4 erence amplitude (o=1); (d)
"""" =2.p=4 - 10,p=4 plots of amplitude AH,,/AH*
o against adhesive cluster size y

(o=1).

041923-4



ADHESIVE DYNAMICS OF LUBRICATED FILMS

(AH< 7"?), adhesion is dominated by the bond stiffness,
leading to tension waves. Conversely, if the gap height is
greater than the critical value (AH>37'?), adhesion is
dominated by binding kinetics, leading to adhesion waves.
This argument suggests that a criterion for tension to adhe-
sion wave transition is B'?AH*>1.

2. Wave transition criterion

We plot the maximum wave amplitude AH,,/ AH* against
the transition parameter (8"?AH*) as shown in Fig. 4(b),
where €=2 and a={1,2,5,10}. We observe that the transi-
tion points are consistently greater than unity, which agrees
with the criterion for wave transition (8"?AH*>1). In addi-
tion, we found that an increase in adhesion strength o leads
to dispersion in tension waves but amplification in adhesion
waves. This disparity results in sharp tension to adhesion
wave transition points under strong adhesion.

3. Criterion is insufficient

We plot the maximum amplitude AH,,/AH* against the
reference wave amplitude AH* as shown in Fig. 4(c), using a
range of adhesion strengths @={2,10} and adhesion prob-
abilities 8={0,1,2,4}. If =0, no adhesion wave transition
is observed at any adhesion strength «, following the transi-
tion criterion. If 8=0, wave transition is readily observed
under weak adhesion (a@=2), but not under strong adhesion
(@=10), even under exceedingly large reference wave ampli-
tudes AH". The tension wave is sufficiently stable that wave
transition does not even occur. This shows that B?AH*> 1
is a necessary but insufficient criterion for wave transition.

4. Transition depends on adhesion size

Finally we examine the case of nonuniform adhesion. We
plot the maximum amplitude AH,,/ AH" against the adhesion
cluster length y (g=1) as shown in Fig. 4(d). For the case of
weak adhesion (@=2), the amplitude of a tension wave (8
=0) decreases nonlinearly with y, whereas the amplitude of
an adhesion wave (B=4) increases linearly with y. If (8
=1), the contributions due to adhesion and tension cancel out
sufficiently that AH,,/AH" is nearly independent of y. We
note that there is no observable wave transition at low adhe-
sion strengths.

For the case of strong adhesion (a=10), the amplitude of
a tension wave (8=0) decreases rapidly with y until an equi-
librium is reached at approximately 0.25, whereas the ampli-
tude of an adhesion wave (B8=4) increases linearly with Y.
Remarkably, for (8=3/2), we observe a sharp jump in am-
plitude at Y~ 0.3, followed by a transition from tension to
adhesion wave. This result shows wave transition could oc-
cur under strong adhesion and it depends on the relative size
of the adhesion cluster. In contrast, we note that the wave
amplitude AH,,/ AH" is relatively insensitive to the exponen-
tial prefactor 7, which describes the shape of the adhesion
distribution function (results not shown).

IV. CONCLUSION

We review briefly the main findings of the present paper.
Membrane waves are found to exist as either tension or ad-
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hesion waves depending on competitive tension and adhe-
sion effects. In contrast to tension waves, adhesion waves
show characteristically amplified peaks and are highly per-
sistent. The transition of tension to adhesion waves is found
to depend on a necessary but insufficient criterion
(B2AH*>1). Strong adhesion results in sharp tension-to-
adhesion wave transitions.

The biological relevance of lubrication adhesive dynamics
deserves mention. Owing to limited experimental data, it is
difficult to conclude whether the protrusion traveling waves
observed on adhered cell membranes are tension or adhesion
waves. Images obtained from differential inference contrast
(DIC) microscopy and plotted on kymographs show highly
persistent waves, whose wavelengths first increase and later
decrease with time, shortly after leading edge retraction [1].
These observations support the presence of adhesion waves
as opposed to tension waves, which tend to disperse. On a
different note, it would be interesting if DIC kymographs can
be superimposed on vinculin-stained images with reference
to the positions of focal contacts and adhesions [3]. This can
elucidate membrane behavior, such as the extent of wave
dispersion, in the presence of localized adhesion structures,
such as focal adhesions.

Owing to protrusion forces, it is possible for the lamellum
to separate from the membrane. Fluid is trapped between the
lamellum and the membrane, instead of between the mem-
brane and the substrate [1]. Since the lamellum and mem-
brane layers are held by adhesive molecules, the present lu-
brication adhesive dynamics model remains applicable.
However, since the adhesion force required for lamellum
separation (~150 pN/um) [37] is closely matched by pro-
trusion forces [38—40], its occurrence is by no means defini-
tive. Similar membrane delamination is involved in a related
problem of blebbing, where an asymmetry in retraction could
result in traveling bleb phenomenon (see Appendix B).

Our findings could be extended to two dimensional cell
membranes even though we do not expect any significant
difference compared to the current results. Nevertheless, we
noted that focal adhesions have limited sizes so that mem-
brane waves far away are expected to encounter less resis-
tance. This aspect could be further investigated.

The present lubrication adhesive dynamics model is mini-
mal. First, the fixed point perturbation model adopts a sim-
plistic view of the protrusion event, whose physics is com-
plex and largely unknown currently. Second, the model does
not account for slow kinetics, where the time scale of bond
formation and breakage is significant, as well as catch-slip
bond behavior, where bond strengthen on extension [41].
Lastly, we assume that there are no significant biochemical
processes affecting the wave dynamics. Despite such limita-
tions, the present model explains the coupled physics behind
lubricated adhesive membranes and it represents a first step
toward the elucidation of biological problems involving
membrane adhesion and thin liquid films.
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APPENDIX A: BOUNDARY LAYERS

Inspection of Eq. (8) shows that if the bending term is
neglected (y7— 0), the order of equation is reduced by two so
that two out of the original six boundary conditions cannot
be satisfied. This implies that even in a tension-dominated
regime (o> %), a boundary layer exists within which bend-
ing effects cannot be neglected. Balance of the bending and
tension terms yields an estimate of the bending boundary
layer thickness (&/L)~ (y/ oL?)"2.

If, in addition, the tension term is neglected (7—0), the
order of equation is further reduced by two. Thus, even in the
adhesion-dominated regime (a> ), a tension boundary
layer exists whose thickness is (/L) ~ (o/AK,,«L*)">.

If 0<£&<, the respective boundary layers are nested,
such that the bending boundary layer is confined within the
tension boundary layer. Membrane behavior is governed by
different regimes under different length scales.

APPENDIX B: TRAVELING BLEBS

Blebs are blisterlike protrusions of the cell surface that
appear and disappear from the surface of a cell [42]. The
formation of blebs is thought to be initiated by the separation
of the cell membrane from the cortex [43]. Some long-lived
blebs, commonly observed in embryonic blastomeres, are
observed to travel tangentially along the cell surface in a
persistent manner [44]. One question we ask is whether there
is a simple physical explanation for such traveling phenom-
enon.

Consider a flexible cell membrane adhered to an immov-
able cortex, which is assumed to be impenetrable to fluid.
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The dimensional lubrication adhesive dynamics equations
are

1
dh—-—a.(h*ap)=0,

Bl
2 (Bla)

(p-p.)—Apk(h=N\) + 00, .h— vd,,.,h=0. (Blb)

Using a small perturbation on the gap height A=\+h’,
where the disturbance is expressed in the form &'
=h exp(ikx+st), we linearize the equations around the equi-
librium gap height 2=\ and obtain a characteristic equation
for the growth rate s,

12u .
(F)S =2ikd (A,K) + 0, (ApK) — (Aykk® + ok* + YKS),

(B2)

where the first term on the right-hand side is imaginary and
produces traveling wave solutions with phase speed
Im(s/k)=(\*/6u)d(A k). Hence, it is clear that any non-
trivial spatial adhesion gradient is sufficient to produce tan-
gential motion in a perturbation. There is no additional re-
quirement for external forcing. Although the actual size of a
bleb is larger than what can be considered as a minor pertur-
bation, sustained traveling motion in blebs can be expected
to be driven through local gradients of adhesion or an asym-
metric retraction of actomyosin cortex [44].

As a side note, if the adhesion curvature term is greater
than the sum of all the dissipative terms, i.e., d,(A,k)
> (A, k> + ok*+ ykS), then the real part of the growth rate
Re(s)>0 and instability occurs. This suggests that it is
physically possible for bleb growth to occur, even tran-
siently, during a bleb retraction phase.
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